1743: 树网的核
Description
路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a,b)为a,b两结点间的距离。
一点v到一条路径P的距离为该点与P 上的最近的结点的距离:
d(v, P)=min{d(v, u), u为路径P上的结点}
树网的直径:树网中最长的路径称为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。
偏心距 ECC(F):树网T中距路径F最远的结点到路径F的距离,即
ECC(F) = max{d(v, F), v∈V}
任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,它是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。
下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。
Input
第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号依次为1,2,...,n。
从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。
所给的数据都是正确的,不必检验。
数据规模:
40%的数据满足:5<=n<=15;
70%的数据满足:5<=n<=80;
100%的数据满足:5<=n<=300,0<=s<=1000。边长度为不超过1000的正整数。
Output
每组输出只有一个非负整数,为指定意义下的最小偏心距。
Sample Input Copy
5 2
1 2 5
2 3 2
2 4 4
2 5 3
8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
Sample Output Copy
5
5